Robot Learning: Exploration and Continuous Domains
نویسنده
چکیده
The goal of this workshop was to discuss two major issues: efficient exploration of a learner's state space, and learning in continuous domains. The common themes that emerged in presentations and in discussion were the importance of choosing one's domain assumptions carefully, mixing controllers/strategies, avoidance of catastrophic failure, new approaches with difficulties with reinforcement learning, and the importance of task transfer.
منابع مشابه
A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملA robot that reinforcement-learns to identify and memorize important previous observations
It is difficult to apply traditional reinforcement learning algorithms to robots, due to problems with large and continuous domains, partial observability, and limited numbers of learning experiences. This paper deals with these problems by combining: 1. reinforcement learning with memory, implemented using an LSTM recurrent neural network whose inputs are discrete events extracted from raw inp...
متن کاملActive exploration in parameterized reinforcement learning
Online model-free reinforcement learning (RL) methods with continuous actions are playing a prominent role when dealing with real-world applications such as Robotics. However, when confronted to non-stationary environments, these methods crucially rely on an exploration-exploitation trade-off which is rarely dynamically and automatically adjusted to changes in the environment. Here we propose a...
متن کاملA Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot
We address the problem of online path planning for optimal sensing with a mobile robot. The objective of the robot is to learn the most about its pose and the environment given time constraints. We use a POMDP with a utility function that depends on the belief state to model the finite horizon planning problem. We replan as the robot progresses throughout the environment. The POMDP is highdimen...
متن کاملPerception-Based Generalization in Model-Based Reinforcement Learning
OF THE DISSERTATION Perception-Based Generalization in Model-Based Reinforcement Learning by Bethany R. Leffler Dissertation Director: Michael L. Littman In recent years, the advances in robotics have allowed for robots to venture into places too dangerous for humans. Unfortunately, the terrain in which these robots are being deployed may not be known by humans in advance, making it difficult t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993